Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Microbiol ; 12: 758948, 2021.
Article in English | MEDLINE | ID: covidwho-1551518

ABSTRACT

Despite significant efforts, there are currently no approved treatments for COVID-19. However, biotechnological approaches appear to be promising in the treatment of the disease. Accordingly, nucleic acid-based treatments including aptamers and siRNAs are candidates that might be effective in COVID-19 treatment. Aptamers can hamper entry and replication stages of the SARS-CoV-2 infection, while siRNAs can cleave the viral genomic and subgenomic RNAs to inhibit the viral life cycle and reduce viral loads. As a conjugated molecule, aptamer-siRNA chimeras have proven to be dual-functioning antiviral therapy, acting both as virus-neutralizing and replication-interfering agents as well as being a siRNA targeted delivery approach. Previous successful applications of these compounds against various stages of the pathogenesis of diseases and viral infections, besides their advantages over other alternatives, might provide sufficient rationale for the application of these nucleic acid-based drugs against the SARS-CoV-2. However, none of them are devoid of limitations. Here, the literature was reviewed to assess the plausibility of using aptamers, siRNAs, and aptamer-siRNA chimeras against the SARS-CoV-2 based on their previously established effectiveness, and discussing challenges lie in applying these molecules.

2.
J Transl Med ; 19(1): 164, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199918

ABSTRACT

BACKGROUND: The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY: Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION: Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.


Subject(s)
COVID-19 Drug Treatment , Exosomes , Mesenchymal Stem Cell Transplantation , Humans , SARS-CoV-2
3.
BMC Public Health ; 21(1): 105, 2021 01 09.
Article in English | MEDLINE | ID: covidwho-1015854

ABSTRACT

BACKGROUND: When a new or re-emergent pathogen, such as SARS-CoV-2, causes a major outbreak, rapid access to pertinent research findings is crucial for planning strategies and decision making. We researched whether the speed of sharing research results in the COVID-19 epidemic was higher than the SARS and Ebola epidemics. We also researched whether there is any difference in the most frequent topics investigated before and after the COVID-19, SARS, and Ebola epidemics started. METHODS: We used PubMed database search tools to determine the time-period it took for the number of articles to rise after the epidemics started and the most frequent topics assigned to the articles. RESULTS: The main results were, first, the rise in the number of articles occurred 6 weeks after the COVID-19 epidemic started whereas, this rise occurred 4 months after the SARS and 7 months after the Ebola epidemics started. Second, etiology, statistics & numerical data, and epidemiology were the three most frequent topics investigated in the COVID-19 epidemic. However, etiology, microbiology, and genetics in the SARS epidemic, and statistics & numerical data, epidemiology, and prevention & control in the Ebola epidemic were more frequently studied compared with other topics. Third, some topics were studied more frequently after the epidemics started. CONCLUSIONS: The speed of sharing results in the COVID-19 epidemic was much higher than the SARS and Ebola epidemics, and that there is a difference in the most frequent articles' topics investigated in these three epidemics. Due to the value of time in controlling epidemics spread, the study highlights the necessity of defining more solutions for rapidly providing pertinent research findings in fighting against the next public health emergency.


Subject(s)
COVID-19/epidemiology , Epidemics , Information Dissemination , Research , Hemorrhagic Fever, Ebola/epidemiology , Humans , Severe Acute Respiratory Syndrome/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL